Relationship between myosin heavy chain fibre type and restoration of dystrophin expression and key components of the dystrophin-associated glycoprotein complex by Tricyclo-DNA mediated exon skipping

نویسندگان

  • Saleh Omairi
  • Kwan-Leong Hau
  • Henry Collin-Hooper
  • Federica Montanaro
  • Aurelie Goyenvalle
  • Luis Garcia
  • Ketan Patel
چکیده

Exon skipping mediated by tricyclo-DNA (tc-DNA) antisense oligonucleotides has been shown to induce significant levels of dystrophin restoration in mdx, a mouse model of Duchenne Muscular Dystrophy. This translates into significant improvement in key disease indicators in muscle, cardio-respiratory function, heart and the central nervous system. Here we examine the relationship between muscle fibre type, based on Myosin Heavy chain profile, and the ability of tc-DNA to restore not only dystrophin but also other members of the dystrophin-associated glycoprotein complex (DAPC). We first profiled this relationship in untreated mdx muscle and found that all fibre types support reversion events to a dystrophin positive state, in an unbiased manner. Importantly, we show that only a small fraction of revertant fibres expressed other members of the DAPC. Immunoblot analysis of protein levels, however, revealed robust expression of these components, which failed to correctly localise to the sarcolemma. We then show that tc-DNA treatment leads to nearly all fibres expressing not only dystrophin but also other key components of the DAPC. Of significance, our work shows that MHC fibre type does not bias the expression of any of these important proteins. This work also highlights that the improved muscle physiology following tc-DNA treatment reported previously results from the complete restoration of the dystrophin complex in all MHCII fibres with equal efficiencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restoration of the dystrophin-associated glycoprotein complex after exon skipping therapy in Duchenne muscular dystrophy.

We previously conducted a proof of principle; dose escalation study in Duchenne muscular dystrophy (DMD) patients using the morpholino splice-switching oligonucleotide AVI-4658 (eteplirsen) that induces skipping of dystrophin exon 51 in patients with relevant deletions, restores the open reading frame and induces dystrophin protein expression after intramuscular (i.m.) injection. We now show th...

متن کامل

Restoration of dystrophin expression in mdx muscle cells by chimeraplast-mediated exon skipping.

The most common types of dystrophin gene mutations that cause Duchenne muscular dystrophy (DMD) are large deletions that result in a shift of the translational reading frame. Such mutations generally lead to a complete absence of dystrophin protein in the muscle cells of affected individuals. Any therapeutic modality that could restore the reading frame would have the potential to substantially...

متن کامل

P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...

متن کامل

2′-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease characterized by dystrophin deficiency from mutations in the dystrophin gene. Antisense oligonucleotide (AO)-mediated exon skipping targets restoration of the dystrophin reading frame to allow production of an internally deleted dystrophin protein with functional benefit for DMD patients who have out-of-frame deletions. After a...

متن کامل

Massive Idiosyncratic Exon Skipping Corrects the Nonsense Mutation in Dystrophic Mouse Muscle and Produces Functional Revertant Fibers by Clonal Expansion

Conventionally, nonsense mutations within a gene preclude synthesis of a full-length functional protein. Obviation of such a blockage is seen in the mdx mouse, where despite a nonsense mutation in exon 23 of the dystrophin gene, occasional so-called revertant muscle fibers are seen to contain near-normal levels of its protein product. Here, we show that reversion of dystrophin expression in mdx...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017